Velo3D to Distribute Metal 3D Printers to US Government Customers via Hartech Group
Airbus Taps Liebherr for Complex 3D Printed Part for A350 Fleet
3D Printed Reefs Aim to Restore Cod in Scandinavian Waters
Metals Market Data: Q4 & Annual 2021
Market for Bound Metal Additive Manufacturing 2022
The Market for Additive Manufactured Polymer Automotive Parts: Europe and North America Regions
DED and Large-Format Additive Manufacturing Markets: 2021-2030
3D Printed Metals: A Patent Landscape Analysis 2019
3d Printed Polymers: A Patent Landscape Analysis – 2016
3d-printed Metals: A Patent Landscape Analysis – 2016
Metal Parts Produced 2021: Additive Manufacturing Applications Market Analysis
Additive Manufacturing with Metal Powders 2020
Copper Additive Manufacturing 2020–Market Database and Outlook
Surface Finish Study by Fraunhofer IAPT
Additive Monitoring Study by Fraunhofer IAPT
Additive Fatigue Study by Fraunhofer IAPT
A curated collection of industry and product deep-dives.
Videos, podcasts, product reviews and free downloadable resources.
Powerful search with product databases and business directories.
Dig Deeper, Search Our Message Board 3dprintboard.com
Business Development Manager - Medical Device, Joints or Ortho
Feature Your Job Posting Here
Velo3D to Distribute Metal 3D Printers to US Government Customers via Hartech Group
Airbus Taps Liebherr for Complex 3D Printed Part for A350 Fleet
3D Printed Reefs Aim to Restore Cod in Scandinavian Waters
Velo3D to Distribute Metal 3D Printers to US Government Customers via Hartech Group
Airbus Taps Liebherr for Complex 3D Printed Part for A350 Fleet
3D Printed Reefs Aim to Restore Cod in Scandinavian Waters
Les Kalman is Assistant Professor of Restorative Dentistry and Academic Lead for Continuing Dental Education at Western University’s Schulich School of Medicine & Dentistry. He will be participating in Additive Manufacturing Strategies 2022, Panel 2: Improving the patient experience with 3D printing.
Dental implants remain the gold standard for the replacement of a missing tooth or teeth. If all the teeth in one arch are entirely missing (edentulous) then rehabilitation with implants provides patients an improvement in function, aesthetics and quality of life. Implant bars are a predictable and cost-effective option, where the bar supports and retains the denture, instead of resting on the patient’s soft tissues. Implant bars are delivered to patients through a complex clinical workflow and fabricated through subtractive manufacturing or milling. The milling process has its disadvantages, in terms of cost, efficiency and environmental footprint.
As metal additive manufacturing (AM) matures, it presents a novel opportunity for the fabrication of implant bars, which may reduce both the time and cost, ultimately improving the accessibility for the treatment. Moreover, AM may provide a more sustainable approach, especially through a more conservative lattice-structured design, reducing dentistry’s environmental footprint. This report explains our workflow developed for the fabrication of additive manufactured solid & lattice-structured titanium alloy dental implant overdenture bars.
A dental implant metal bar was sourced from Panthera Dental. This bar was part of a patient education model, consisting of the implant bar, model of the patient’s lower jaw (mandible) and the simulated soft tissue (Figure 1). The implant bar was milled from titanium alloy (Ti6Al4V) on a fully robotic CNC machine at a 4.0 manufacturing facility. The bar was monobloc, with no welded areas and no porosity, and had a very accurate and passive fit with the dental implants on the model. The STL file of the bar was provided by Panthera Dental.
Figure 1. Patient soft tissue model with implants and milled dental implant bar.
The implant bar design file (STL) was reviewed by ADEISS (London, Ontario) to evaluate the design for additive manufacturing. Review for AM determined that the STL design required modifications to incorporate through-holes of 2 mm in diameter for implant placement, and the overall implant bar structure needed to be thickened to account for AM post-processing where surface finishing was required.
Two implant bar designs were generated for AM; the first design was a solid structure to replicate a standard implant bar, and the second design incorporated an internal latticed pattern within the bar component. The lattice design was created using standard computer aided design (CAD) software functions, with circular cross-sectional geometry (Ansys Spaceclaim 3D Modeling Software) (Figures 2 and 3). Additionally, for the lattice-designed bars, drainage holes of 0.75 mm diameter were incorporated into the anterior walls, such that non-consolidated powder from the AM process could be cleaned from the samples in post-processing (Figure 3). The final STL designs for AM were confirmed to match the dimensions of a comparative milled bar sample.
Figure 2. Implant bar model with internal lattice pattern. (Image provided by ADEISS Inc., London, ON, Canada)
Figure 3. Implant bar design with circular cross-section internal lattice pattern. (Image provided by ADEISS Inc., London, ON, Canada)
STL designs for AM were prepared for printing in medical-grade titanium alloy (Ti6Al4V). Printing was done using selective laser melting technology with the Renishaw AM 400 system (Renishaw PLS, Gloucestershire, United Kingdom). The 3D printer utilizes alloy powder within the range of 30 – 50 µm in diameter, with a 400W laser of 70 µm diameter, to consolidate the final implant bars within a 250 mm x 250 mm x 250 mm build volume. A total of 18 implant bars (12 solid, 6 internal lattices) were fabricated with machine print time of 7 hours and 6 mins.
Following the printing process, the build plate with implant bars were cleaned using compressed air. Air was cycled across the build plate and through drainage holes until no loose powder was further expelled. Following powder clearance, the implant bars were exposed to standard heat treatment in a vacuum furnace, removed from the build plate, and surface finished. All implant bars were processed to a mirror polished finish (< 1 µm Ra) using hand tooling (Figure 4). The final processing step included cleaning of all implant bars using ADEISS ultrasonic cleaning methods to remove any remaining alloy powder and polishing agents.
Figure 4. Final AM latticed-structured dental implant bar.
The AM workflow fabricated dental implant bars that were evaluated to be clinically acceptable, based on the fit with the original patient model and subsequently with the fit of a denture (Figure 5). Based on the number of implant bars that can be fabricated from the build plate, the time of fabrication and cost, the AM fabrication workflow suggested advantages over conventional milling. Further research is being conducted through 4-point testing and will be released in the coming months.
Figure 5. AM implant bar threaded onto dental implants supporting a complete denture.
The AM workflow for both solid and latticed-structured dental implant bars indicated that AM is a suitable, and perhaps a superior, fabrication workflow for implant bars. Further research and metrics are needed. Workflows that provide improved cost savings, efficiency and sustainability should be explored, to not only improve the patient experience but also the sustainability of the profession.
Panthera Dental provided the milled implants bars and models; all design, manufacturing, and post-processing for AM were completed by the Additive Design in Surgical Solutions Centre (ADEISS Inc.); Alien Milling Technologies provided the Ivotion denture. This research was funded by an International Congress of Oral Implantologists (ICOI) IDREF grant. Special thanks to Dr. Yara Hosein for above and beyond assistance.
Stay up-to-date on all the latest news from the 3D printing industry and recieve information and offers from thrid party vendors.
Velo3D to Distribute Metal 3D Printers to US Government Customers via Hartech Group
Airbus Taps Liebherr for Complex 3D Printed Part for A350 Fleet
Global aerospace and defense giant Airbus has announced that next year, it will launch into space what the company says will be the first metal 3D printer in use aboard the...
Lufthansa Technik and Premium AEROTEC have announced the development of an aviation-certified, load-bearing 3D printed part. Certified by European safety authority EASA, the component is for an IAE V2500 engine...
Sintavia‘s Brian Neff has built a company that uses a fleet of large metal powder bed fusion systems to 3D print some of the most demanding and technically challenging parts...
Aidro, an Italian company specializing in the design and production of hydraulic and fluid power systems, has been named a qualified supplier with additive manufacturing (AM) techniques for the helicopter...
Upload your 3D Models and get them printed quickly and efficiently.
Networking & Intelligence Summit, February 7-9, 2023
3D Printing jobs around the world.
Subscribe to Our Email Newsletter
© 2016 - 2022 3DR HOLDINGS. ALL RIGHTS RESERVED.
Register to view and download proprietary industry data from SmarTech and 3DPrint.com Questions? Contact info@3dprint.com